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Generalized hierarchical model of defect development and self-organized criticality
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International Institute for Earthquake Prediction Theory and Mathematical Geophysics, Moscow, Russia

~Received 12 September 1996; revised manuscript received 9 June 1997!

A hierarchical model of defect development is found to display self-organized criticality~SOC! for a wide
range of parameters. The model displays three different types of behavior, of which two are SOC behaviors.
One of them had been found before in similar hierarchical systems, the other type being new. We show the
difference between the two kinds and specify how the system goes from one SOC behavior to another while
structure parameters of the system change discretely. The new type of SOC behavior allowed us to obtain a
delocalization phenomenon for the model. The magnitude-frequency relation for both types of SOC behavior
is approximately a straight line with a slope of21. @S1063-651X~98!11403-4#

PACS number~s!: 64.60.Lx
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I. INTRODUCTION

One can understand self-organized criticality~SOC! in a
dynamical system intuitively as a power law of i
magnitude-frequency relation~the dependence of event num
ber on event size! obtained in a general case@1#. ~In fact, in
@1# SOC means the independence of this power law form
the initial condition only.! If the system depends on a param
eter, it is natural to call SOC a self-similarity of th
magnitude-frequency relation for a wide range of the para
eter @2#. That essentially differs from systems entering t
critical state for one value of system parameter, when
magnitude-frequency relation that is exponential for an in
val of parameters changes to a power law for one param
value. An example of such behavior is phase transition
thermodynamics. In contrast to this, self-organized critica
~SOC! allows one to obtain a power law for the magnitud
frequency relation in a wide range of parameters instead
one isolated value.

A sandpile model displaying self-organized criticality w
introduced in the well-known paper of Baket al. @1#. Further
investigations in this area showed other models with
same interesting feature, for example,@3# ~linear spring
model! and@4# ~two-dimensional net of blocks and springs!.
Later the models were constructed expressing not only s
natural phenomena as earthquakes@5# or solar radiation flow
@6#, but also such complexities as the behavior of biologi
systems@7#, dynamics of economic indexes@8#, or the occur-
rence of traffic jams@9# ~see also review@10#!. Despite such
wide distribution of the self-organized criticality phenom
enon, the exact reasons for its appearance are not reve
yet, and it is not possible to predict whether a system p
sesses this feature.

Global lithosphere activity is an important example of
physical process in which SOC is present. The Gutenb
Richter law@11# expresses the magnitude-frequency relat
for earthquakes as

log N5a2bM,

whereN is the number of earthquakes with magnitudes eq
to or greater thanM . This power law holds for a broad
magnitude range. The Gutenberg-Richter law reflects the
571063-651X/98/57~4!/3804~10!/$15.00
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that the global distribution of earthquakes possesses the
ture of self-organized criticality.

We are interested in dynamical models displaying SO
similar to the one expressed in the Gutenberg-Richter l
One type of system possessing this interesting feature
sists of hierarchical models. A hierarchical model wi
branch number 3 was investigated in@2# and displayed self-
organized criticality for a wide range of parameters. O
model is a generalization of the previous one. Increasing
branch number and introducing new threshold paramet
we have obtained a new kind of model behavior and calle
‘‘unstable self-organized criticality.’’ This kind of critica
behavior has not been found previously. We also have
tained a critical behavior similar to the one observed in@2#,
which can be called ‘‘stable self-organized criticality.’’ W
have described the new behavior and the difference betw
this and stable SOC behavior. We outlined how the trans
happens from known behavior to unknown. We also co
puted the magnitude-frequency relations for all kinds of s
tem behavior and showed that for stable SOC and unst
SOC the magnitude-frequency law is self-similar.

The delocalization phenomenon is a deviation of t
magnitude-frequency law from the straight line, expressed
an upward bend or gap in the line, or both. In case of s
micity models, delocalization implies that the number of o
served earthquakes with large magnitudes is disproport
ally large comparing with the number of earthquakes w
small and medium magnitudes~upward bend! or an absence
of earthquakes with magnitudes in some range~gap!. Delo-
calization was obtained by Carlsonet al. @12#. In their study
of the Burridge-Knopoff model@13# of block and spring
models, they obtained that small events are distributed
correspondence with the Gutenberg-Richter law, while la
events exceeded the estimated number. Later Lomnitz-A
et al. @14# obtained a delocalization phenomenon for mod
in which the stress is distributed among the nodes of a t
dimensional lattice, and Shnirmanet al. @15# observed it by
modeling an earthquake fault by means of a one-dimensio
system of cellular automata. In our case we have specific
defined the event probability, which allowed us to observ
downward bend and gap in the magnitude-frequency rela
for the case of unstable SOC behavior.
3804 © 1998 The American Physical Society
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57 3805GENERALIZED HIERARCHICAL MODEL OF DEFECT . . .
In the second section of this paper a general descriptio
the system is given and kinetic equations defining its evo
tion are written down. In the third section we show examp
describing all types of system behavior and discuss t
properties, depending on the values of system parameter
the fourth section it is outlined how these types of behav
are situated in the two-dimensional space of system par
eters. In the fifth section we find the magnitude-frequen
law and show its realizations for different kinds of syste
behavior. The sixth section is devoted to the delocalizat
phenomenon displayed by our system. The seventh sec
contains conclusions and final remarks, and the eighth
knowledgments.

II. GENERAL DESCRIPTION OF THE MODEL

The model is constructed as an inverse cascade. We
sider a hierarchical tree with branch numbern ~see Fig. 1!.
We denote the number of levels asL11, and the number o
current level asl . Numbers of level increase upward, th
bottom level having the number 0, and the top level num
L. The l th level of the tree containsanL2 l elements. For
example, the bottom level~0th! containsanL elements and
the top level~Lth! containsa elements. In our computation
we assumea51. Any element of the (l 11)th level of the
tree is connected by branches withn elements of the lower
l th level. We call thesen elementsa group of elements. Any
group of elements of thel th level corresponds to an eleme
of the upper (l 11)th level.

Our model is a dynamic model, it evolves during tim
The time increases discretely. At one time step the sys
passes from one state to another. A state of the syste
defined by states of all its elements.

There are two possible states for any element of
model: the intact state and the defect state. At the initial ti
moment all elements are intact. Appearance of defect
ments, ordefects, at one time step obeys the following rule

~i! At the bottom level, intact elements at the time m
ment t become defects with the probabilitya0 at t11.

~ii ! At any other levell ( l 51,2, . . . ,L), the intact element
at t becomes a defect att11 if the corresponding group ofn
elements of the (l 21)th level containedW defects or more
at the momentt.

We call W a functioning threshold. We call the group of
elements containingW defects or morea critical configura-
tion. We call the group of elements containing fewer thanW

FIG. 1. A hierarchical tree with branch numbern54. A similar
tree can be drawn for an arbitraryn.
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defects anoncritical configuration.
If a defect appears at the current time step we call ita new

defect. If it appears at some previous time step, we refer t
asan old defect.

Rules~i! and ~ii ! imply that with increasing time all ele
ments become defects sooner or later. To avoid such triv
ity we introduce rules for transformation of a defect eleme
into an intact element~we call it healing!.

~a! Deterministic (pattern) healing: if a group of n ele-
ments containsK defects or more at the time momentt, any
element of the group becomes intact att11. We call param-
eterK a healing threshold.

~b! Stochastic (individual) healing: any defect element a
level l can possibly change from ruptured to intact withthe
healing intensityb( l ), which is the probability for a defec
element on thel th level at the time momentt to become
intact at the time momentt11.

If a defect becomes intact at the current time step, we
it a new intact element. If it appeared at some previous tim
step, and has not been ruptured, we refer to it asan old intact
element.

Both kinds of healing are only for defects existing f
more than one time step. If a defect has appeared at
current time step, healing rules do not apply to it.

We specify the order of application for the rules as fo
lows. At one time step, rule~a! ~deterministic healing! acts
first, and transforms defects of the critical configuration
intact elements that should stay unruptured at this time s
After that, only the defects contained in the noncritical co
figurations remain. Then, to old intact elements, rules~i! and
~ii ! of defect development apply, creating new defects t
should stay unhealed at this time step. Combinations of
and new defects that have made critical configurations tra
fer the perturbation to the next level of hierarchy. At la
rule ~b! ~stochastic healing! works among the old defects
changing~probably! some of them into intact elements.

We assume probabilityb( l ) depending on level numberl
and independent of time, namely,

b~ l !5b0cl ,

where b0 and c are constants in the range 0<b0,1 and
0,c,1.

So, our system depends on three structure parame
branch numbern and thresholdsK andW. Fixing those, we
obtain a specified model and can investigate its beha
depending on evolution parametersa0 , b0 , andc. Changing
those, we obtain different kinds of SOC, as shown below

Let time increase discretely:t50,1,2,. . . , structure pa-
rametersn, K, andW being fixed, and let our model evolv
due to rules~i! and~ii ! and~a! and~b!. At the 0th level new
defects would appear and would form critical configuratio
These configurations would transport perturbation to the n
level. Any new defect possibly will be healed. We compu
states of all elements at every time step.

For the description of our model behavior we use t
following values: ~i! the intensity of defect generation o
the l th level at momentt, a( l ,t); ~ii ! healing intensity of
single defectsb( l ); ~iii ! density of groups of defectsPi( l ,t),
that is, the probability for a group at levell and at time
momentt to contain exactlyi defects,i 50,1, . . . ,n. Configu-
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3806 57M. G. SHNIRMAN AND Y. A. TYURINA
rations containing equal numbers of defects have equal p
abilities. Formulas fora( l ,t) and Pi( l ,t) will be given be-
low; ~iv! the density of defect elements of levell at moment
t denotedp( l ,t), that is, the mathematical expectation of t
defect number in a group of defects at thel th level at time
momentt divided by the number of elements in the group

p~ l ,t !5
1

n (
i 51

i 5n

i S i
nD Pi~ l ,t !.

To obtain kinetic equations for our model, we express
probability for a group of elements of thel th level to contain
exactly j defects at momentt11 via probabilities for a
group of elements of thel th level to contain exactlyi defects
at momentt and the conditional probabilities of passa
from a configuration withi defects to one withj defects. We
express it as

Pj~ l ,t11!5 (
i 50

i< j ,i ,K

Pi~ l ,t !Q~ i , j !1 (
i 5 j 11

i ,K

Pi~ l ,t !R~ i , j !

1 (
i 5K

n2 j

Pi~ l ,t !S~ i , j !. ~1!

Here, Q( i , j ) denotes the conditional probability to pa
from all configurations withi defects to the configuration
with j defects, wherei , j . At one time step,h defects from
existing i defects stochastically heal,i 2h defects remain,
( j 2 i )1h new defects appear, and (N2 j )2h elements stay
unruptured. So we obtain

Q~ i , j !5 (
h50

h< i ,h<n2 j S i 2h
j D @12b~ l !# i 2ha~ l ,t !~ j 2 i !1h

3S h
n2 j Db~ l !h@12a~ l ,t !#~n2 j !2h.

Similarly, R( i , j ) denotes the conditional probability t
pass from all configurations withi defects to the configura
tion with j defects, wherej , i ,K: at one time step,i 2h
defects fromi defects stochastically heal,h defects remain,
j 2h new defects appear, and (N2 j )2( i 2h) elements stay
unruptured. So

R~ i , j !5 (
h5 j 2m

j S h
j D @12b~ l !#ha~ l ,t ! j 2hS i 2h

n2 j D
3b i 2h@12a~ l ,t !#~n2 j !2~ i 2h!,

wherem5min(j,n2i).
At last, S( i , j ) denotes the conditional probability to ob

tain a configuration withj defects from all possible configu
rations with i defects whilei>K: at the time step thesei
defects heal deterministically, among otherN2 i elements
that were intact,j new defects appear, andN2 i 2 j defects
remain intact. Hence

S~ i , j !5S i
n2 j Da~ l ,t ! j@12a~ l ,t !#n2 i 2 j .
b-

e

For the bottom 0th level the intensity of the appearance
new defects is constant. We denoted it above asa0 . The
intensity of the generation of defects for thel th level is as-
sumed to depend on critical configurations of thel th level.
We express it as a sum of the probabilitiesPi( l ,t) multiplied
by the conditional probabilities to proceed from configur
tions with i defects to a critical configuration withj defects:

a~ l 11,t !5 (
j 5W

n S j
nD F (

i 50

i , j ,i ,K

Pi~ l ,t !S i
j Da~ l ,t ! j 2 i

3@12a~ l ,t !#n2 j1 (
i 5K

n2 j

Pi~ l ,t !S i
n2 j D

3a~ l ,t ! j@12a~ l ,t !#n2 i 2 j G . ~2!

The first part of the expression in large square brack
corresponds to noncritical configurations withi defects, in
which j 2 i new defects should appear. The second par
the expression corresponds to critical configurations witi

FIG. 2. An example of the stable behavior: functionsa( l ) and
p( l ) for n54, K52, W54, a050.9, b050.
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FIG. 3. ~a! An example of stable SOC behavior forb050: n54, K54, W52. Line ~1! corresponds toa050.000 01, line~2!
corresponds toa050.01, line ~3! corresponds toa050.999. ~b! An example of stable SOC behavior forb0.0: n54, K54, W52,
b050.2, c50.9. Line ~1! corresponds to subcriticala050.01, and almost coincides with thex axis; line ~2! corresponds to overcritica
a050.05.
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defects that should be healed by deterministic healing,
among n2 i intact elements left,j elements should be
changed to new defects.

Formulas~1! and ~2! allow us to investigate the system
behavior for different values of parametersa0 , b0 , and c
while n, K, andW are fixed. We investigate the defect de
sity p( l ,t) and the intensity of defect generationa( l ,t) in
order to construct the magnitude-frequency law on this ba
We use the other quantities for computation of these two

All results described here were obtained by numeri
modeling. The range of structure parameters is 3<n<9,
1<K<n, 1<W<n; that of evolution parameters i
0.001<a0<0.999, 0<b0<0.9999, 0.7<c<1, unless other-
wise specified.

III. THREE TYPES OF SYSTEM BEHAVIOR

We show four examples in order to describe the followi
three types of the system behavior.

First type.We use structure parameter valuesn54, K52,
W54 and obtain that att→`, p( l ,t) anda( l ,t) for fixed l
tend to the finite limitsp( l ) and a( l ). Functionsp( l ) and
d

is.

l

a( l ) decrease rapidly for increasingl , and for largel one
has p( l )50 anda( l )50 ~see Fig. 2!. This result was ob-
served for any values ofa0 , b0 , andc for given n, K, and
W.

We call such behavior@when p( l ) and a( l ) tend to 0#
stability. For it, events of medium or large size are abse
Below, when we describe behavior of the system as stabi
it means thatp( l ,t) anda( l ,t) decrease similarly, as show
in the above example, for a wide range of parametersa0 ,
b0 , andc.

Second type.We use parameter valuesn55, K55, W53
and obtain that att→`, p( l ,t) anda( l ,t) for fixed l tend to
the finite limitsp( l ) anda( l ). While l increases,p( l ) tends
to the asymptotep* . Similarly, while l increases, function
a( l ) tends to the limit valuea* .

For b050, considering any value of intensity of defe
generationa0 , at t→` while l increasesp( l ) tends to the
stationary valuep* .0 anda( l ) tends to the stationary valu
a* .0 @see Fig. 3~a!#.

For b0.0 there is a critical valueacr depending onb0 .
For anya0.acr at t→`, while l increases,p( l ) tends to the
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3808 57M. G. SHNIRMAN AND Y. A. TYURINA
valuep* .0 anda( l ) to the valuea* .0.
We call such behaviorstable self-organized criticality.

Below, when we call a system behavior the stable SOC,
mean that limitsp( l ) and a( l ) exist and tend to nonzer
valuesp* anda* for a wide range of evolution paramete
a0 , b0 , andc, while structure parametersn, K, andW are
fixed.

In this example, for anya0,acr at t→`, while l in-
creases,p( l ) anda( l ) both decrease rapidly and for largel
are equal to 0. So, fora0,acr we observe stability, and fo
a0.acr we observe the stable SOC@see Fig. 3~b!#.

To find out howp( l ,t) and a( l ,t) in this example con-
verge to their limitsp( l ) anda( l ) as t→` for every l , we
computed log10up( l ,t)2p( l )u and log10ua( l ,t)2a( l )u for
fixed l . Those quantities decrease, as is shown in Fig. 4

Third type. The third type of behavior needs two e
amples for description.

For the first example we use structure parametersn53,
K52, W51. For any combination ofa0 , b0 , and c, as t
→`, if we fix time stept ~large enough!, while l increases,
p( l ,t) tends to the asymptotep* . But asl increases further
p( l ,t) deviates from this asymptote and for different tim
steps tends to 0 or 1. If we fix level numberl , then, as time
goes on, for low levelsp( l ,t) oscillates chaotically with
small amplitude near the finite limitp* , and for upper levels
it oscillates chaotically with large amplitude. The intensity

FIG. 4. Convergence ofp( l ,t) and a( l ,t) to their limits p( l )
and a( l ), for n53, K52, W52, a050.2, b050.2, c50.9, t
51, . . . ,2000.
e

f

defect developmenta( l ,t) as t→`, if we fix t and increase
l , tends to the asymptotea* , and, asl increases further,
a( l ,t) also deviates from it and tends to 0 or 1. If, for larg
enough fixed number of levell , at the momentt, p( l ,t) is
close to 1, the correspondinga( l ,t) is close to 0, and vice
versa. For low levels,a( l ,t) with an increase oft oscillates
chaotically near the finite limita* ~l is fixed!, and the am-
plitude of this oscillation is small. For higher levels it osc
lates chaotically with large amplitude. Graphs forp( l ,t) and
a( l ,t) are shown in Fig. 5~a!. An example of oscillation at a
fixed level is shown in Fig. 6.

We call such behaviorunstable self-organized criticality.
Below, when we call a system behavior the unstable SO
we mean that the quantitiesp( l ,t) and a( l ,t) change with
time steps as was described in this example, for a wide ra
of evolution parametersa0 , b0 , andc ~while structure pa-
rametersn, K, andW are fixed!.

To our knowledge, this type of behavior is entirely new.
has not been observed in previous works concerned w
hierarchical systems.

Despite the oscillation and apparent chaos of the beh
ior, its magnitude-frequency relation shown below allow
us to refer to it as another manifestation of SOC in an e
dently chaotic system. This is also true for the next exam

The second example takes into account structure par
etersn54, K52, W52.

For b050 and anya0 the system behavior copies th
previous example and displays unstable SOC. For the c
b0.0 there exists a critical valueacr such that for any
a0,acr as t→`, while l increases,p( l ,t) and a( l ,t) de-
crease rapidly and are 0 for largel , so for a0,acr we ob-
serve stability here. For anya0.acr , p( l ,t) anda( l ,t) are
as in the case ofb050: while l increases, they tend to as
ymptotesp* and a* , and then alternate between 0 and
@see Fig. 5~b!#. Oscillation occurs similar to that described
the previous example. This behavior is the unstable SOC

On the whole, for a fixed combination of structure para
etersn, K, andW, the system displays stability for anya0 ,
b0 , andc, stable SOC for one range of evolution paramet
and stability for another, unstable SOC for anya0 , b0 , and
c, or unstable SOC for one range of evolution paramet
and stability for another.

IV. THE ARRANGEMENT OF THE TYPES OF SYSTEM
BEHAVIOR IN THE TWO-DIMENSIONAL

PARAMETER SPACE

The system displays three types of behavior, depend
on the combination of structure parametersK andW, which
may vary from 1 ton. For any pair (K,W) the system be-
havior can be pointed out.

Let us show the dependence of the system behavior on
pair (K,W) of threshold parameters forn56 as a table. Here
a ‘‘stability’’ square means stable behavior for the ent
range of evolution parameters; a ‘‘stable SOC’’ squa
means that for this (K,W) pair, stable SOC and stability ar
observed. An ‘‘unstable SOC’’ square means that for t
(K,W) pair, unstable SOC behavior, or unstable SOC a
stability, is observed.

Looking at table, one can see that the values of thresh
parameters that produce self-organized critical beha
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FIG. 5. ~a! An example of unstable SOC for the caseW51: n53, K52, a050.0001,b050.9999,c50.9. Solid line is fort534 999,
dashed fort535 000. ~b! An example of unstable SOC for the caseW.1, b0.0: n54, K52, W52, b050.99, c51. Line ~1!
corresponds to subcriticala050.075, line~2! corresponds to overcriticala050.09. Solid part of line~2! corresponds to the time momen
t519 999, and dashed line tot520 000.
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~stable and unstable! occupy a connected domainK>W in
the two-dimensional space of parameters, excluding the
ues ofW close ton. In the table this domain is outlined by
dashed line. For any other pair of structure parameters
system displays stability, that is, forK>W, whereW is close
to n, and for allK<W.

The threshold parameters that produce self-organ
critical behavior divide into two groups.

~a! The group of stable self-organized criticality consis
of two parts. One part consists of pairs (K,W) with K5n
and anyW.1 exceptW close ton ~rightmost column of the
table!; the other contains one more pair (K,W), where
n.K>W and W is equal to the greatestW ~or less 1! for
pairs withK5n.

~b! The group of unstable self-organized criticality co
tains all the other pairs. For the pairs withW51 the behavior
is similar to that shown in the first example of the unsta
SOC ~the unstable SOC for the entire range of evoluti
parameters!, and for pairs withW.1 the behavior is as in
the second example~the unstable SOC for one range of ev
lution parameters, the stability for the other!.

A similar table can be made for an arbitraryn: domains of
l-

ur

d

e

stability and regions containing stable and unstable s
organized criticality are situated in the space of thresh
parameters (K,W), 1<K<n, 1<W<n as described above
~see Fig. 7!.

V. MAGNITUDE-FREQUENCY RELATION
FOR THE SYSTEM

The magnitude-frequency relation displays the dep
dence of event number on event energy. We assume tha
energy of an event depends on the number of the leve
hierarchy:

E~ l !5anl ,

wherea is a constant giving the number of events for t
highest level of hierarchy. In our computations we assum
a51. The probability of the appearance of a new defec
the levell during time step from the momentt until t11 is

Pnew5a~ l ,t !@12p~ l ,t !#.
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3810 57M. G. SHNIRMAN AND Y. A. TYURINA
To find the mean number of events for one time s
N( l ,t), we multiply the number of elements of the level b
the probability of the appearance of a new defect:

N~ l ,t !5Pnewn
L2 l .

When our system displays stability or stable se
organized critical behavior,a( l ,t) and p( l ,t) tend to the
stationary valuesa( l ) andp( l ) ast→`, and we can find the
mean number of events at the levell for one time step as

N~ l !5a~ l !@12p~ l !#nL2 l .

In the case of stable self-organized criticality, t
magnitude-frequency relation in the log-log scale is a l
close enough to the straight line with the slope21 ~see Fig.
8!. For the bottom levels~first 5–10 levels! the slope of the
magnitude-frequency line is less than21. As l increases, the
slope tends to21 and for the upper levels, wherea( l ) and
p( l ) are already very close to the stationary valuesp* and
a* , the slope becomes equal to21. Figure 8 shows the
magnitude-frequency relations for two different values ofK.
The magnitude-frequency lines for both cases are almos
same.
p

-

e

he

For b050 andb0.0 the magnitude-frequency relation
differ. For b050 and anya0 the magnitude-frequency line
is close enough~in the sense described above! to the straight
line with the slope21. Forb0.0 all a0 divide into subcriti-
cal and overcritical. For subcriticala0 , p( l ) anda( l ) van-
ish, and the magnitude-frequency relation decreases rap
For overcritical values, whenp( l ) anda( l ) tend to asymp-
totes, it is close to a straight line with the slope21 ~see Fig.
9!.

When the system displays unstable self-organized crit
behavior, there are no stationary values fora( l ,t) and
p( l ,t), so it seems natural to define a magnitude-freque
relation for a mean number of events on the time inter
DT,

Nmean~ l !5
1

DT (
t5T0

T01DT

N~ l ,t !

for large enoughT0 ~its value depends on the convergen
rate of the process and is defined by values of structure
rametersn,K,W! and for large enoughDT.

The magnitude-frequency line consists of two parts o
straight line with the slope21 connected by a short~5–8
FIG. 6. ~a! Graphs ofp( l ,t) anda( l ,t) for n55, K53, W52, t539 999,40 000. ~b! Chaotic oscillation ofp( l ,t) anda( l ,t) for fixed
level numberl 541 and other parameters as in Fig. 5~a!. ~c! Part of ~b! to larger scale.
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TABLE I. The arrangement of the types of system behavior
two-dimensional parameter space forn56.

FIG. 6 ~Continued!.
levels! line, corresponding to the movement of the syste
with the growth ofl from asymptotes to the extreme points
and 1. This short line also is close to the straight line with
slope21.

For the fixed n,K,W and changinga0 , magnitude-
frequency lines have small differences in the initial leve
and in the short lines connecting linear parts, as is show
Fig. 10. Whena0 is changed, the magnitude-frequency lin
changes its slope at the beginning and~very slightly! in the
middle of the line. Its linear parts for both cases coincid
with the slope21.

At last, for the case of stability we obtain that th
magnitude-frequency relation vanishes, as is shown in
11.

VI. THE DELOCALIZATION PHENOMENON

To obtain delocalization in our model, we consider t
case of unstable SOC. A new defect, appearing at level ,

FIG. 7. The arrangement of stable and unstable SOC and st
ity areas in the two-dimensional parameter space (K,W) for an
arbitraryn.

FIG. 8. Magnitude-frequency relations for stable SOC and t
different valuesK53 and K55. The other parameters aren55,
a050.15, b050.2, c50.9, W53. Magnitude-frequency lines fo
both cases almost coincide.
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will probably become a part of the critical configuration, b
which the perturbation is transferred to the next levell 11,
thus forming a new defect. Here we will calculate the pro
ability of the appearance of a defect of levell that does not
lead to the transfer of perturbation to the next levell 11.
This allows us to identify events of a given level, which d
not participate in an event of the next level.

We denote asPnew( l ,t) the probability to have the critica
configuration with at least one new~appearing during the las
time step! defect. To obtain the exact formula forPnew( l ,t),
we use this consideration. Let us denote asPm( l ,t) the prob-
ability for the critical configuration to contain exactlym new
defects. ThenPm( l ,t) consists of conditional probabilities t

FIG. 9. Magnitude-frequency relations for stable SOC, para
etersn55, K55, W53, b050.2, c50.9, and two values ofa0 ,
subcritical and overcritical. The magnitude-frequency relation in
first case@line ~1! for subcriticala050.05# decreases rapidly. In the
second case@line ~2! for overcritical a050.99# the magnitude-
frequency relation is a straight line with the slope of21.

FIG. 10. Magnitude-frequency relations in the case of unsta
SOC and two differenta050.1 anda050.9. The other parameter
n54, K52, W52, b050.7, c50.9. Magnitude-frequency line
corresponding to differenta0 differ at the initial levels and in the
middle of the plot. Linear parts of both lines coincide. The slope
these lines is21.
-

pass from all configurations with no less thanm intact ele-
ments to a critical configuration, where exactlym of them
have become the new defects:

Pm~ l ,t !5 (
i>0,i>W2m

n2m S i
nD Pi~ l ,t !S m

n2 i Da~ l ,t !m@1

2a~ l ,t !#n2 i 2m

and the complete probability for the new defect to app
within the critical configuration is

Pnew~ l ,t !5
1

n (
m51

n

mPm~ l ,t !.

Then the probability of the appearance of a new defect wh
does not lead to the transfer of perturbation to the next le
at the momentt and levell , is

Pa~ l ,t !5a~ l ,t !@12p~ l ,t !#2Pnew~ l ,t !@12p~ l 11,t !#,
~3!

where, as one can easily see,a( l ,t)@12p( l ,t)# is the prob-
ability of the appearance of a new defect at levell , and
Pnew( l ,t)@12p( l 11,t)# is the probability for this newborn
defect to be part of the process of transfer of the perturba
to the nextl 11 level. For the top level with the numberL
one hasPa(L,t)5p(L,t), because the defects of higher le
els do not exist.

The mean number of events at levell , N( l ,t), is the pure
probability of the appearance of a defect multiplied by t
number of elements at level

N~ l ,t !5Pa~ l ,t !nL2 l .

The magnitude-frequency line is straight for levels whe
p( l ,t) and a( l ,t) tend to asymptotes. For levels whe
p( l ,t) and a( l ,t) deviate from the asymptotes, th
magnitude-frequency line bends downward. A gap on
line corresponds to levels wherep( l ,t) anda( l ,t) are equal
to 0 or 1. For these levels of hierarchy events do not occu

-

e

le

f

FIG. 11. An example of the magnitude-frequency relation
the case of stability. Parameter values aren54, K53, W53,
a050.7, b050.3, c50.9.
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any event of this size implies the largest event and par
pates in it. And there is also an isolated point showing
number of events for the top level of hierarchy. An exam
of such a magnitude-frequency relation is shown in Fig.

VII. CONCLUSIONS

We have constructed and investigated a hierarchical
tem that evolved in accordance with given kinetic equatio
and depended on two sets of parameters. We observed
two of the three types of behavior of this system disp
SOC for a wide range of parameters, while in the third c
stability occurs. For the first behavior type, which we call
stable SOC, the functionsp( l ,t) and a( l ,t), describing the
system behavior, tend to finite limits ast→` for every l .
This is similar to the system behavior observed and
scribed before@2#. For the second type, which we calle
unstable SOC, functionsp( l ,t) anda( l ,t) for every l oscil-
late chaotically ast increases. The amplitude of oscillatio

FIG. 12. Magnitude-frequency relation for ‘‘pure probabilities
displays a downward bend and a gap at the right side of the p
For this plot n53, K52, W51. The slope of the linear part i
21.001.
s-

A

i-
e
e
.

s-
s
hat
y
e

-

depends on the level number. It is small for lower levels a
large for higher ones. This chaotic behavior results from
large dimension of the phase space for each level.

To our knowledge, such behavior was not observed
previous works concerned with hierarchical systems and
entirely new. To define the attractor dimension of the syst
in such a chaotic case is an interesting problem.

We divided the two-dimensional space of the structu
parameters (K,W) into areas corresponding to the differe
types of system behavior. That allowed us to define the
pendence of the system behavior on the values of all sys
parameters: the pair (K,W) defines the type of behavior
while the evolution parametersa0 , b0 , and c define the
development and behavior of the system within the giv
type in the way described above.

Magnitude-frequency relations were computed for t
three types of system behavior. For stable SOC and unst
SOC the magnitude-frequency relation is approximately
straight line with a slope of21. For the case of stability, the
magnitude-frequency relation decreases to 0 for some
levels of the system and is equal to 0 for the other levels

We introduced a special expression for event probabili
in order to distinguish events of small size, which do n
participate in events of larger size, and to avoid counting o
event, which lasts for some time steps, more than one ti
The magnitude-frequency law, constructed on the basis
this expression, shows a big gap corresponding to event
large sizes. In the system, only events of small, medium,
maximum possible size may occur. Any large event is onl
part of an event of the largest size. So, we obtained a d
calization phenomenon. It is in accordance with real obs
vations, when for a given seismic region only small, m
dium, and largest ~‘‘characteristic’’! earthquakes are
observed, large events are absent@16#.
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