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A hierarchical model of defect development is found to display self-organized criti¢Si0) for a wide
range of parameters. The model displays three different types of behavior, of which two are SOC behaviors.
One of them had been found before in similar hierarchical systems, the other type being new. We show the
difference between the two kinds and specify how the system goes from one SOC behavior to another while
structure parameters of the system change discretely. The new type of SOC behavior allowed us to obtain a
delocalization phenomenon for the model. The magnitude-frequency relation for both types of SOC behavior
is approximately a straight line with a slope ofl. [S1063-651X98)11403-4

PACS numbd(s): 64.60.Lx

[. INTRODUCTION that the global distribution of earthquakes possesses the fea-
ture of self-organized criticality.
One can understand self-organized critica(800 in a We are interested in dynamical models displaying SOC

dynamical system intuitively as a power law of its similar to the one expressed in the Gutenberg-Richter law.
magnitude-frequency relatidthe dependence of event num- One type of system possessing this interesting feature con-
ber on event sizeobtained in a general cagg]. (In fact, in  sjsts of hierarchical models. A hierarchical model with
[1] SOC means the independence of this power law form obranch number 3 was investigated[i and displayed self-
the initial condition only) If the system depends on a param- grganized criticality for a wide range of parameters. Our
eter, it is natural to call SOC a self-similarity of the mggel is a generalization of the previous one. Increasing the
magnltude-frequency relatlpn for a wide range of the_parambranch number and introducing new threshold parameters,
eter [2]. That essentially differs from systems entering thewe have obtained a new kind of model behavior and called it

critical state for one value of system parameter, when th“a‘unstable self-organized criticality.” This kind of critical

magnitude-frequency relation that is exponential for an mter'behavior has not been found previously. We also have ob-

val of parameters changes to a poyver_law for one paramet %hined a critical behavior similar to the oﬁe observedlah

value. An example of such behavior is phase transition in", . » : RN
which can be called “stable self-organized criticality.” We

thermodynamics. In contrast to this, self-organized criticality . i .
(SOQ allows one to obtain a power law for the magnitude-have described the new behavior and the difference between

frequency relation in a wide range of parameters instead dfis and stable SOC behaviqr. We outlined how the transfer
one isolated value. happens from known behavior to unknown. We also com-

A sandpile model displaying self-organized criticality was Puted the magnitude-frequency relations for all kinds of sys-
introduced in the well-known paper of Bak al.[1]. Further ~tem behavior and showed that for stable SOC and unstable
investigations in this area showed other models with theSOC the magnitude-frequency law is self-similar.
same interesting feature, for exampl&] (linear spring The delocalization phenomenon is a deviation of the
mode) and[4] (two-dimensional net of blocks and springs magnitude-frequency law from the straight line, expressed as
Later the models were constructed expressing not only sucan upward bend or gap in the line, or both. In case of seis-
natural phenomena as earthquakgsor solar radiation flow  micity models, delocalization implies that the number of ob-
[6], but also such complexities as the behavior of biologicakerved earthquakes with large magnitudes is disproportion-
systemg 7], dynamics of economic indexg8], or the occur-  ally large comparing with the number of earthquakes with
rence of traffic jam¢9] (see also reviewl0]). Despite such  small and medium magnitudéspward benglor an absence
wide distribution of the self-organized criticality phenom- of earthquakes with magnitudes in some rafg@p. Delo-
enon, the exact reasons for its appearance are not revealeglization was obtained by Carlset al.[12]. In their study
yet, and it is not possible to predict whether a system posof the Burridge-Knopoff mode[13] of block and spring
sesses this feature. models, they obtained that small events are distributed in

Global lithosphere activity is an important example of acorrespondence with the Gutenberg-Richter law, while large
physical process in which SOC is present. The Gutenbergevents exceeded the estimated number. Later Lomnitz-Adler
Richter law[11] expresses the magnitude-frequency relatioret al.[14] obtained a delocalization phenomenon for models
for earthquakes as in which the stress is distributed among the nodes of a two-

dimensional lattice, and Shnirmaa al. [15] observed it by
log N=a—bM, modeling an earthquake fault by means of a one-dimensional
system of cellular automata. In our case we have specifically
whereN is the number of earthquakes with magnitudes equatiefined the event probability, which allowed us to observe a
to or greater tharM. This power law holds for a broad downward bend and gap in the magnitude-frequency relation
magnitude range. The Gutenberg-Richter law reflects the fador the case of unstable SOC behavior.
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defects anoncritical configuration

If a defect appears at the current time step we calliew

defect If it appears at some previous time step, we refer to it
/\ asan old defect
- v < — Rules(i) and (ii) imply that with increasing time all ele-

‘ ments become defects sooner or later. To avoid such trivial-
ity we introduce rules for transformation of a defect element
A\ ﬂ\ A 7§ into an intact elemengwe call it healing.

e i a===a~ (a) Deterministic (pattern) healingif a group ofn ele-

ments contain& defects or more at the time momentany

element of the group becomes intact &tl. We call param-
eterK a healing threshold

FIG. 1. A hierarchical tree with branch numbes4. A similar (b) Stochastic (individual) healingany defect element at
tree can be drawn for an arbitrany level | can possibly change from ruptured to intact witie

healing intensity3(l), which is the probability for a defect

In the second section of this paper a general description aflement on thdth level at the time moment to become
the system is given and kinetic equations defining its evoluintact at the time momertt+ 1.
tion are written down. In the third section we show examples If a defect becomes intact at the current time step, we call
describing all types of system behavior and discuss theiit a new intact elementf it appeared at some previous time
properties, depending on the values of system parameters. #tep, and has not been ruptured, we refer to @rasld intact
the fourth section it is outlined how these types of behaviorlement
are situated in the two-dimensional space of system param- Both kinds of healing are only for defects existing for
eters. In the fifth section we find the magnitude-frequencymore than one time step. If a defect has appeared at the
law and show its realizations for different kinds of systemcurrent time step, healing rules do not apply to it.
behavior. The sixth section is devoted to the delocalization We specify the order of application for the rules as fol-
phenomenon displayed by our system. The seventh sectidows. At one time step, ruléa) (deterministic healingacts
contains conclusions and final remarks, and the eighth adirst, and transforms defects of the critical configuration to

knowledgments. intact elements that should stay unruptured at this time step.
After that, only the defects contained in the noncritical con-
Il. GENERAL DESCRIPTION OF THE MODEL figurations remain. Then, to old intact elements, rylgand

(i) of defect development apply, creating new defects that
The model is constructed as an inverse cascade. We coshould stay unhealed at this time step. Combinations of old
sider a hierarchical tree with branch numivefsee Fig. L and new defects that have made critical configurations trans-
We denote the number of levels bs- 1, and the number of fer the perturbation to the next level of hierarchy. At last,
current level ad. Numbers of level increase upward, the rule (b) (stochastic healingworks among the old defects,
bottom level having the number 0, and the top level numbechanging(probably some of them into intact elements.
L. TheIth level of the tree containan“~' elements. For We assume probabilitg(l) depending on level numbér
example, the bottom leveDth) containsant elements and and independent of time, namely,
the top level(Lth) containsa elements. In our computations
we assumea=1. Any element of thel(+ 1)th level of the B(1)=Boc,
tree is connected by branches withelements of the lower
Ith level. We call these elementsa group of elementsAny  where 8y and ¢ are constants in the range<(B,<1 and
group of elements of thith level corresponds to an element 0<c<1.
of the upper [+ 1)th level. So, our system depends on three structure parameters:
Our model is a dynamic model, it evolves during time. branch numben and threshold& andW. Fixing those, we
The time increases discretely. At one time step the systerabtain a specified model and can investigate its behavior
passes from one state to another. A state of the system @epending on evolution parameterg, B3,, andc. Changing
defined by states of all its elements. those, we obtain different kinds of SOC, as shown below.
There are two possible states for any element of our Let time increase discretely=0,1,2.. .., structure pa-
model: the intact state and the defect state. At the initial timeameters, K, andW being fixed, and let our model evolve
moment all elements are intact. Appearance of defect eledue to ruleqi) and(ii) and(a) and(b). At the Oth level new
ments, ordefects at one time step obeys the following rules. defects would appear and would form critical configurations.
(i) At the bottom level, intact elements at the time mo-These configurations would transport perturbation to the next

mentt become defects with the probability, att+ 1. level. Any new defect possibly will be healed. We compute
(ii) At any other level (I1=1,2,...L), the intact element states of all elements at every time step.

att becomes a defect at- 1 if the corresponding group of For the description of our model behavior we use the

elements of thel(1)th level containedV defects or more following values: (i) the intensity of defect generation on

at the moment. the Ith level at moment, «(l,t); (ii) healing intensity of

We call W a functioning thresholdWe call the group of  single defectg3(l); (iii ) density of groups of defec®'(l,t),
elements containingV defects or mora critical configura-  that is, the probability for a group at levéland at time
tion. We call the group of elements containing fewer thn momentit to contain exactly defectsj=0,1,...n. Configu-
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rations containing equal numbers of defects have equal prob-
abilities. Formulas forx(l,t) and P'(l,t) will be given be-
low; (iv) the density of defect elements of ledeht moment

t denotedp(l,t), that is, the mathematical expectation of the
defect number in a group of defects at tltle level at time
momentt divided by the number of elements in the group:

R
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1" i 0.60
p(l,t)—HE ( )P(I b).

0.40 —
To obtain kinetic equations for our model, we express the ]

probability for a group of elements of thth level to contain E
exactly j defects at moment+1 via probabilities for a 0.20 ]
group of elements of thith level to contain exactly defects ]
at momentt and the conditional probabilities of passage o] 1
from a configuration with defects to one with defects. We 000 % ' T

i 2 5 4 5 6 7 &8 & 10 11
express it as
i<ji<K i<K v
PLt+1)= ¥ PIOQ>I+ > P(LORG.]) p(l)
i=0 iZ]+1 0.50 -
n-—j
+iZK P(1,1)S(i,j). 1) 040 ]
Here, Q(i,j) denotes the conditional probability to pass 0.302
from all configurations withi defects to the configuration 1
with j defects, wheré<(j. At one time steph defects from 1
existing i defects stochastically heal-h defects remain, 0.20 3
(j—i)+h new defects appear, antll - j) —h elements stay 3
unruptured. So we obtain o0 3
h<i,h<n-j i—h
Q(i,j)= 2 ( i )[1_ﬁ(|)]iha(|yt)(ji)+h oooE 1
= ) IR I A R R
><< E-)ﬂ(')h[l— al ,t)](n—j)—h_ FIG. 2. An example of the stable behavior: functiand) and
n p(l) for n=4,K=2, W=4, a;=0.9, B,=0.

Similarly, R(i,j) denotes the conditional probability to  For the bottom Oth level the intensity of the appearance of
pass from all configurations withdefects to the configura- new defects is constant. We denoted it abovengs The
tion with j defects, wherg <i<K: at one time stepi—h jntensity of the generation of defects for tié level is as-
defects fromi defects StOChaStlcally hed‘ defects rema|n Sumed to depend on Cr|t|ca| Conf|gurat|0ns Of tm |eve|

j—h new defects appear, antli{-j) — (i —h) elements stay \ve express it as a sum of the probabilitRigl ,t) multiplied

unruptured. So by the conditional probabilities to proceed from configura-
: tions withi defects to a critical configuration withdefects:
< [ Lo fi=h
R(,j)= 2> (-)[l—ﬁ(l)] a(1,t)) ( i "
h m\J n—|j

=T- a(l+1t)= 2, ( ){K_J}I‘TK Pi(l, t)( )a(|,t)Ji

X B~ 1— a(l,£)]—D—G=h), =w

n—j

wherem=min(j,n—i). X[1—a(l,t)]" 1+2 Pi(1,t ( )
At last, S(i,j) denotes the conditional probability to ob- -l

tain a configuration withj defects from all possible configu-

rations withi defects whilei=K: at the time step these xd“,t)i[l_a(u)]n—i—j}_ )

defects heal deterministically, among otHér-i elements

that were intactj new defects appear, aimdl—i—| defects

remain intact. Hence The first part of the expression in large square brackets

corresponds to noncritical configurations wittdefects, in

which j—i new defects should appear. The second part of

the expression corresponds to critical configurations with

S(i,j)=

)a(l HI[1—a(l,t)]" ),
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FIG. 3. (8 An example of stable SOC behavior f@,=0: n=4, K=4, W=2. Line (1) corresponds tax,=0.000 01, line(2)
corresponds tavy=0.01, line (3) corresponds tav,=0.999. (b) An example of stable SOC behavior f@;,>0: n=4, K=4, W=2,
Bo=0.2,c=0.9. Line(1) corresponds to subcriticat,=0.01, and almost coincides with theaxis; line (2) corresponds to overcritical
a,=0.05.

defects that should be healed by deterministic healing, and(l) decrease rapidly for increasirig and for largel one
among n—i intact elements left,j elements should be hasp(l)=0 anda(l)=0 (see Fig. 2. This result was ob-

changed to new defects. served for any values afy, 3o, andc for givenn, K, and
Formulas(1) and (2) allow us to investigate the system .
behavior for different values of parametetg, By, andc We call such behaviofwhen p(l) and «(l) tend to g

while n, K, andW are fixed. We investigate the defect den- stapility. For it, events of medium or large size are absent.
sity p(l,t) and the intensity of defect generatiai{l,t) in  Below, when we describe behavior of the system as stability,
order to construct the magnitude-frequency law on this basig; yeans thap(l,t) anda(l,t) decrease similarly, as shown
We use the other quantities for computation of these two. ;- - 2bove example, for a wide range of parameteys

All results described here were obtained by numericalﬂ andc ’
modeling. The range of structure parameters isn3<9, O’Secon(.j typeWe use parameter values=5, K =5, W=3

<K= sW=n; ) '
0,001 4y=0.999, O fp0.9998, 0301, unless other- 210 ODtan that & =, p(1.0) anda1. o) for fxed tend to
wise specified. the finite limitsp(l) anda'(l). Whllgl mpreasesp(l) tenc.is
to the asymptote@*. Similarly, while| increases, function
a(l) tends to the limit valuer*.
For Bo=0, considering any value of intensity of defect
We show four examples in order to describe the followinggenerationa, att—o while | increase9(l) tends to the

Ill. THREE TYPES OF SYSTEM BEHAVIOR

three types of the system behavior. stationary valug* >0 andea(l) tends to the stationary value
First type.We use structure parameter values4, K=2, a* >0 [see Fig. 8)].
W=4 and obtain that at—c, p(l,t) and «(l,t) for fixed | For By>0 there is a critical valuex,, depending org,.

tend to the finite limitsp(l) and «a(l). Functionsp(l) and  For anyay> «a, att—oo, whilel increasesp(l) tends to the
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logiola(l,t) — a(l)l defect developmenk(l,t) ast—oo, if we fix t and increase
~1068 I, tends to the asymptote*, and, asl increases further,
a(l,t) also deviates from it and tends to O or 1. If, for large
enough fixed number of levé| at the moment, p(l,t) is
close to 1, the corresponding(l,t) is close to 0, and vice
versa. For low levelsg(l,t) with an increase of oscillates
chaotically near the finite limit* (I is fixed), and the am-
plitude of this oscillation is small. For higher levels it oscil-
lates chaotically with large amplitude. Graphs fdt,t) and
a(l,t) are shown in Fig. &). An example of oscillation at a
~T558 fixed level is shown in Fig. 6.
We call such behaviounstable self-organized criticality
t Below, when we call a system behavior the unstable SOC,
we mean that the quantitigg(l,t) and «(l,t) change with
time steps as was described in this example, for a wide range
of evolution parameterg,, By, andc (while structure pa-
rametera, K, andW are fixed.
logio Ip(Lt) — p(1)! To our knowledge, this type of behavior is entirely new. It
=145 4 has not been observed in previous works concerned with
: hierarchical systems.

Despite the oscillation and apparent chaos of the behav-
ior, its magnitude-frequency relation shown below allowed
us to refer to it as another manifestation of SOC in an evi-
dently chaotic system. This is also true for the next example.

The second example takes into account structure param-
etersn=4,K=2, W=2.

For Bo=0 and any«, the system behavior copies the
~11:80 previous example and displays unstable SOC. For the case

Bo>0 there exists a critical valuer, such that for any
t ag<ag ast—oo, while | increasesp(l,t) and «(l,t) de-
crease rapidly and are O for large so for ag<a. we ob-

FIG. 4. Convergence op(l,t) and «(l,t) to their limits p(l) serve stability here. For anyy> a,, p(l,t) and«(l,t) are
and «(l), for n=3, K=2, W=2, ¢4=0.2, B,=0.2, c=0.9, t as in the case 0By=0: while | increases, they tend to as-
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=1,...,2000. ymptotesp* and «*, and then alternate between 0 and 1
[see Fig. ®)]. Oscillation occurs similar to that described in

valuep*>0 anda(l) to the valuea™® >0. the previous example. This behavior is the unstable SOC.
We call such behaviostable self-organized criticality On the whole, for a fixed combination of structure param-

Below, when we call a system behavior the stable SOC, wetersn, K, andW, the system displays stability for any,,
mean that limitsp(l) and «(l) exist and tend to nonzero g, andc, stable SOC for one range of evolution parameters
valuesp* anda* for a wide range of evolution parameters and stability for another, unstable SOC for amy, 3,, and
@g, Bo, andc, while structure parameters K, andW are ¢, or unstable SOC for one range of evolution parameters

fixed. and stability for another.
In this example, for anywy<a. at t—oo, while | in-

creasesp(l) and «(l) both decrease rapidly and for large
are equal to 0. So, fowy< . We observe stability, and for
ay> ag We observe the stable SO€ee Fig. 8)].

To find out howp(l,t) and «(l,t) in this example con-
verge to their limitsp(l) and a(l) ast—o for everyl, we The system displays three types of behavior, depending
computed loggp(l,t)—p(l)| and logge(l,t)—a(l)| for  on the combination of structure parametkrandW, which
fixed |. Those quantities decrease, as is shown in Fig. 4. may vary from 1 ton. For any pair K,W) the system be-

Third type. The third type of behavior needs two ex- havior can be pointed out.
amples for description. Let us show the dependence of the system behavior on the

For the first example we use structure parametets3,  pair (K,W) of threshold parameters for=6 as a table. Here
K=2, W=1. For any combination ofy,, By, andc, ast a “stability” square means stable behavior for the entire
—oo, if we fix time stept (large enough while | increases, range of evolution parameters; a “stable SOC” square
p(l,t) tends to the asymptofg*. But asl increases further, means that for thisK,W) pair, stable SOC and stability are
p(l,t) deviates from this asymptote and for different time observed. An “unstable SOC” square means that for this
steps tends to 0 or 1. If we fix level numberthen, as time (K,W) pair, unstable SOC behavior, or unstable SOC and
goes on, for low levelsp(l,t) oscillates chaotically with stability, is observed.
small amplitude near the finite limg*, and for upper levels Looking at table, one can see that the values of threshold
it oscillates chaotically with large amplitude. The intensity of parameters that produce self-organized critical behavior

IV. THE ARRANGEMENT OF THE TYPES OF SYSTEM
BEHAVIOR IN THE TWO-DIMENSIONAL
PARAMETER SPACE
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a(l,t) a(lt)
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FIG. 5. (a) An example of unstable SOC for the case=1: n=3, K=2, a;=0.0001, 8,=0.9999,c=0.9. Solid line is fort=34 999,
dashed fort=35000. (b) An example of unstable SOC for the cagé>1, B,>0: n=4, K=2, W=2, $,=0.99, c=1. Line (1)
corresponds to subcritical,=0.075, line(2) corresponds to overcriticat,=0.09. Solid part of ling2) corresponds to the time moment
t=19 999, and dashed line te=20 000.

(stable and unstableoccupy a connected domaikk=W in  stability and regions containing stable and unstable self-
the two-dimensional space of parameters, excluding the vabrganized criticality are situated in the space of threshold
ues ofW close ton. In the table this domain is outlined by a parametersk,W), 1<K=n, 1<W=n as described above
dashed line. For any other pair of structure parameters ousee Fig. 7.
system displays stability, that is, f&r=W, whereW is close
to n, and for allK=W.

The threshold parameters that produce self-organized
critical behavior divide into two groups.

(a) The group of stable self-organized criticality consists The magnitude-frequency relation displays the depen-
of two parts. One part consists of pairs,W) with K=n  dence of event number on event energy. We assume that the
and anyW>1 exceptW close ton (rightmost column of the  energy of an event depends on the number of the level of
tablg; the other contains one more paiK,W), where hierarchy:
n>K=W andW is equal to the greate®¥ (or less 1 for
pairs withK=n. E()

(b) The group of unstable self-organized criticality con-
tains all the other pairs. For the pairs with= 1 the behavior i .
is similar to that shown in the first example of the unstable?VN€rea is a constant giving the number of events for the
SOC (the unstable SOC for the entire range of evolutionnighest level of h|_e_rarchy. In our computations we assumed
parameters and for pairs withw>1 the behavior is as in &=1. The probability of the appearance of a new defect at
the second examplghe unstable SOC for one range of evo- the levell during time step from the momentuntil t+1 is
lution parameters, the stability for the other

A similar table can be made for an arbitrarydomains of Prew=a(l,)[1—p(l,1)].

V. MAGNITUDE-FREQUENCY RELATION
FOR THE SYSTEM

=an,
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To find the mean number of events for one time step For Bo=0 andB,>0 the magnitude-frequency relations
N(I,t), we multiply the number of elements of the level by differ. For 8,=0 and anya, the magnitude-frequency line

the probability of the appearance of a new defect: is close enougkin the sense described abgve the straight
L line with the slope-1. ForBy,>0 all ¢ divide into subcriti-
N(I,t)=Ppenn~ . cal and overcritical. For subcriticat,, p(I) and «(l) van-

) - ish, and the magnitude-frequency relation decreases rapidly.
When our system displays stability or stable self-por gvercritical values, whep(l) and a(l) tend to asymp-
organized critical behaviore(l,t) and p(l,t) tend to the igtes it is close to a straight line with the slopél (see Fig.
stationary valueg(l) andp(l) ast—«, and we can find the 9).

mean number of events at the levefor one time step as When the system displays unstable self-organized critical
D= a] L behavior, there are no stationary values fefl,t) and
N()=a(D[1=p()In="" p(l,t), so it seems natural to define a magnitude-frequency

. o relation for a mean number of events on the time interval
In the case of stable self-organized criticality, the

magnitude-frequency relation in the log-log scale is a line

close enough to the straight line with the slopé (see Fig. To+AT
8). For the bottom levelsfirst 5-10 levels the slope of the Noead ) = — 2 N(I,t)
magnitude-frequency line is less tharl. As| increases, the mea AT &, ’

slope tends to-1 and for the upper levels, wheegl) and

p(l) are already very close to the stationary valp&sand for large enoughl, (its value depends on the convergence

a*, the slope becomes equal tol. Figure 8 shows the rate of the process and is defined by values of structure pa-
magnitude-frequency relations for two different valueof rametersn,K,W) and for large enoughAT.

The magnitude-frequency lines for both cases are almost the The magnitude-frequency line consists of two parts of a

same. straight line with the slope-1 connected by a shof6—8
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FIG. 6. (a) Graphs ofp(l,t) and«(l,t) for n=5, K=3, W=2,t=39 999,40 000. (b) Chaotic oscillation ofp(l,t) and«(l,t) for fixed
level numberl =41 and other parameters as in Figa)5 (c) Part of(b) to larger scale.
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FIG. 6 (Continued.

TABLE |. The arrangement of the types of system behavior in

two-dimensional parameter space for 6.

t

1
38500

K 1 2 3 4 5 6
1 UnstablelUnstablgUnstabldUnstabldUnstabld Stable
SOC| SOC| SOC| SoC| SOC| SoC
2 Stabi- ;lUnstableUnstableUnstableUnstable Stable
lity § SocC SOC| SOC| SOC) SOC
3 Stabi- | Stabi- E nstablgUnstablqUnstabld Stable
lity lity | SOoC| sOC| soC| SOC
4 Stabi- | Stabi- | Stabi-i| Stable[Unstabld Stable
lity lity lity SOC| SOC| SOC
5 | Stabi- | Stabi- | Stabi- | Stabi- | Stabi- | Stabi-
lity lity lity lity lity lity
6 | Stabi- | Stabi- | Stabi- | Stabi- | Stabi- | Stabi-
lity lity lity lity lity lity
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FIG. 7. The arrangement of stable and unstable SOC and stabil-
ity areas in the two-dimensional parameter spakeW) for an
arbitraryn.

levelg line, corresponding to the movement of the system
with the growth ofl from asymptotes to the extreme points 0
and 1. This short line also is close to the straight line with the
slope —1.

For the fixed n,K,W and changingay, magnitude-
frequency lines have small differences in the initial levels
and in the short lines connecting linear parts, as is shown in
Fig. 10. Whenag is changed, the magnitude-frequency line
changes its slope at the beginning drdry slightly) in the
middle of the line. Its linear parts for both cases coincide,
with the slope—1.

At last, for the case of stability we obtain that the
magnitude-frequency relation vanishes, as is shown in Fig.
11.

VI. THE DELOCALIZATION PHENOMENON

To obtain delocalization in our model, we consider the
case of unstable SOC. A new defect, appearing at level

lngN(l)

80.00 4

60.00

40.00

TR I I N NI B B B B B A S A A

20.00

0.00 e RN I logion

T
0.00 20.00 40.00 60.00 80.00

FIG. 8. Magnitude-frequency relations for stable SOC and two
different valuesKk =3 andK=5. The other parameters ane=5,
ay=0.15, B,=0.2, c=0.9, W=3. Magnitude-frequency lines for
both cases almost coincide.
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FIG. 9. Magnitude-frequency relations for stable SOC, param- FIG. 11. An example of the magnitude-frequency relation for
etersn=5, K=5, W=3, 3,=0.2, c=0.9, and two values o, the case of stability. Parameter values are4, K=3, W=3,
subcritical and overcritical. The magnitude-frequency relation in theay=0.7, 8,=0.3, c=0.9.
first casdline (1) for subcriticalay=0.05] decreases rapidly. In the
second casgline (2) for overcritical «y=0.99 the magnitude- pass from all configurations with no less thamintact ele-
frequency relation is a straight line with the slope-et. ments to a critical configuration, where exactly of them

have become the new defects:
will probably become a part of the critical configuration, by

n—m
which the perturbation is transferred to the next lelvell, _ i m
thus forming a new defect. Here we will calculate the prob- Pm(l’t)_izoygw,m n Pl(l’t)(n—i)a(l’t)m[l
ability of the appearance of a defect of levehat does not _
lead to the transfer of perturbation to the next lekell. —a(l,)]" "
This allows us to identify events of a given level, which do »
not participate in an event of the next level. and the complete probability for the new defect to appear

We denote a®,.,(l,t) the probability to have the critical Within the critical configuration is
configuration with at least one nef@ppearing during the last n
time step defect. To obtain the exact formula f&r,.(!,t), Proufl,t) = E E
we use this consideration. Let us denotéPagl,t) the prob- newittn
ability for the critical configuration to contain exacthy new
defects. TherP,(I,t) consists of conditional probabilities to Then the probability of the appearance of a new defect which

does not lead to the transfer of perturbation to the next level,
at the moment and levell, is

mP.(1,1).
1

m=

toaN() Pa(1,0)= a(l,D[L (1,01~ Prel,D[1—p(1 + 10)],

60.00 3 (3)
50.00 1 where, as one can easily sed],t)[1—p(l,t)] is the prob-

ability of the appearance of a new defect at lel/eland
4000 Preu(l,t)[1—p(1 +11)] is the probability for this newborn

E defect to be part of the process of transfer of the perturbation
30.00 1 to the nextl +1 level. For the top level with the numbér

E one hasP,(L,t)=p(L,t), because the defects of higher lev-
2000 3 els do not exist. _

3 The mean number of events at leVeN(l,t), is the pure

3 probability of the appearance of a defect multiplied by the
10:00 3 number of elements at level
000 T | 10G 100 N(1,t)=Pa(l,tn"".

FIG. 10. Magnitude-frequency relations in the case of unstable 1he magnitude-frequency line is straight for levels where
SOC and two differentiy=0.1 anday=0.9. The other parameters P(l.t) and a(l,t) tend to asymptotes. For levels where
n=4, K=2, W=2, 8,=0.7, c=0.9. Magnitude-frequency lines P(l,t) and «(l,t) deviate from the asymptotes, the
corresponding to different, differ at the initial levels and in the magnitude-frequency line bends downward. A gap on the
middle of the plot. Linear parts of both lines coincide. The slope ofline corresponds to levels whepgl,t) and «(l,t) are equal
these lines is-1. to O or 1. For these levels of hierarchy events do not occur—
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log,oN(1) depends on the level number. It is small for lower levels and
large for higher ones. This chaotic behavior results from the
large dimension of the phase space for each level.

To our knowledge, such behavior was not observed in

50.00 4

40.00 \ previous works concerned with hierarchical systems and is
., entirely new. To define the attractor dimension of the system
30.00 7 \-\ in such a chaotic case is an interesting problem.
3 "\\ We divided the two-dimensional space of the structure

20.00 3 parameters ,W) into areas corresponding to the different
] . types of system behavior. That allowed us to define the de-
10.00 1 pendence of the system behavior on the values of all system
parameters: the pairk(W) defines the type of behavior,
while the evolution parameters,, By, andc define the
development and behavior of the system within the given
S 1 logion type in the way described above.
70001000 2000 | 3000 4000 50.00 Magnitude-frequency relations were computed for the
three types of system behavior. For stable SOC and unstable
FIG. 12. Magnitude-frequency relation for “pure probabilities” SOC the magnitude-frequency relation is approximately a
displays a downward bend and a gap at the right side of the plotraight line with a slope of 1. For the case of stability, the
For this plotn=3, K=2, W=1. The slope of the linear part is magnitude-frequency relation decreases to 0 for some first
—1.001. levels of the system and is equal to O for the other levels.

S ~ We introduced a special expression for event probabilities
any event of this size implies the largest event and particiin order to distinguish events of small size, which do not

pates in it. And there is also an isolated point showing theyarticipate in events of larger size, and to avoid counting one
number of events for the top level of hierarchy. An examplegyent, which lasts for some time steps, more than one time.
of such a magnitude-frequency relation is shown in Fig. 12The magnitude-frequency law, constructed on the basis of
this expression, shows a big gap corresponding to events of

VII. CONCLUSIONS large sizes. In the system, only events of small, medium, and

. ) . ) maximum possible size may occur. Any large event is only a
We have constructed and investigated a hierarchical SY$5art of an event of the largest size. So, we obtained a delo-

tem that evolved in accordance with given kinetic equationg,ajization phenomenon. It is in accordance with real obser-
and depended on two sets of parameters. We observed tr\ﬁitions, when for a given seismic region only small, me-

two of the three types of behavior of this system displaydium, and largest (“characteristic’) earthquakes are
SOC for a wide range of parameters, while in the third casgpgeryed large events are absir].

stability occurs. For the first behavior type, which we called
stable SOC, the functiong(l,t) and «(l,t), describing the
system behavior, tend to finite limits as-o for everyl.
This is similar to the system behavior observed and de- This work was partially supported by U.S. National Sci-
scribed beford2]. For the second type, which we called ence Foundation Grant No. EAR 94 23818, and International
unstable SOC, functiong(l,t) and «(l,t) for everyl oscil-  Science and Technology Center, Moscvoject No. 415-
late chaotically ag increases. The amplitude of oscillation 96).

0.00
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